ldcf.net
当前位置:首页 >> ∫(0→π/2)xsinx^2Dx >>

∫(0→π/2)xsinx^2Dx

若是 ∫ xsin(x^2)dx 则 ∫ xsin(x^2)dx = (1/2)∫ sin(x^2)d(x^2) = - (1/2)[cosx^2] = (1/2)[1-cos(π^2/4)] 若是 ∫ x(sinx)^2dx 则 ∫ x(sinx)^2dx = (1/2) ∫ x(1-cos2x)dx = (1/2) ∫ xdx - (1/2) ∫ xcos2xdx = (1/4) [x^2] - (1/4) ∫ xdsin2x = π...

因为(xsinx)2=x2(1?cos2x)2,所以∫π0(xsinx)2dx =∫π0x22dx-∫π0x2cos2x2dx.利用分部积分法可得,∫π0x2cos2x2dx=x2sin2x4|π0-∫π0xsin2x2dx=0-(?xcos2x4|π0+∫π0cos2x4dx)=-π4-sin2x8|π0=-π4,又因为 ∫π0x22dx=x36|π0=π36,所以∫π0(xsinx)2dx=

1、本题的积分方法是: A、运用余弦二倍角公式; B、凑微分; C、分部积分。 . 2、具体解答如下,若有疑问,欢迎追问,有问必答; . 3、若点击放大,图片更加清晰。 .

∫[0,π]x^2(sinx^2)dx =∫[0,π]x^2(1/2)(1-cos2x)dx =∫[0,π](1/2)x^2dx-∫[0,π](1/2)x^2cos2xdx =(1/6)π^3 -(1/4)∫[0,π]x^2dsin2x =(1/6)π^3+(1/2)∫[0,π]xsin2xdx =(1/6)π^3+(-1/4)∫[0,π]xdcos2x =(1/6)π^3+(-1/4)π+(1/4)∫[0,π]cos2xdx =(1/6)π^3+(...

为简化起见,以不定积分的方式,从第三个等号前开始计算。 ∫x²dsin2x =x²sin2x-∫sin2xdx² =x²sin2x-2∫xsin2xdx =x²sin2x-∫xsin2xd2x =x²sin2x+∫xdcos2x =x²sin2x+xcos2x-∫cos2xdx =x²sin2x+xcos2x-(1/2...

这个题还行

∫[0→π] √(1 - sin²x) dx = ∫[0→π] √(cos²x) dx = ∫[0→π] |cosx| dx = ∫[0→π/2] cosx dx - ∫[π/2→π] cosx dx = [sinx] |[0→π/2] - [sinx] |[π/2→π] = (1 - 0) - (0 - 1) = 2 如果那个是sin(x²)的话就无能为力了

应用两次施笃兹定理lim an/n^2变为(0,+∞)∫xsin[(3n-3)x]sin[(n-1)x]/(sinx)^2dx+(0,+∞)∫xcos[(4n-4)x]dx=(0,+∞)∫xsin[(3n-3)x]sin[(n-1)x]/(sinx)^2dx=(0,+∞)∫x{cos[(2n-2)x]-cos[4(n-1)x]}/(sinx)^2dx(sinx)^2=-(cotx)'洛朗级数展开得(sinx)^2=...

∫[0→π] cos²(x/2) dx =(1/2)∫[0→π] (1+cosx) dx =(1/2)x + (1/2)sinx |[0→π] =π/2 【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com