ldcf.net
当前位置:首页 >> 求导 E^xsiny–E^–xCosx=o >>

求导 E^xsiny–E^–xCosx=o

e^xsiny -e^(-x).cosx =0 e^x.( siny + cosy .y' ) - e^(-x) ( -cosx - sinx ) =0 siny + cosy .y' =-e^(-2x) ( cosx+ sinx ) y' = (-e^(-2x) ( cosx+ sinx ) - siny)/cosx

d(e^xsiny -e^(-x).cosx)=0 e^xsinydx+e^xcosydy +e^(-x).cosxdx+e^(-x)sinxdx =0

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com