ldcf.net
当前位置:首页 >> Lim(tAnx%sinx)/x∧3 >>

Lim(tAnx%sinx)/x∧3

无穷近似值代换,二倍角公式 =lim(1-cosx)/x²limtanx/x =lim2sin²(x/2)/x² =lim2(x/2)²/x² =1/2

猜x→0时 (tanx-sinx)/x^3 →(sec^x-cosx)/(3x^2) →[(-2)(-sinx)/(cosx)^3+sinx]/(6x) →1/2.

因为tanx精确的说是近似与x/√(x*x+1),这类应用无穷近似值求极限不能简单粗暴的把lim(A+B)拆成=limA+limB,而得先应用三角函数转化,把(tanx-sinx)=(1-cosx)sinx/cosx=2sin(x/2)sin(x/2)sinx/cosx再应用替换,基本都必须把和差形变...

lim(tanx-sinx/sin³x)=lim(1-cosx)/sin²x=lim 2sin²(x/2)/sin²x=(x²/2)/x²=1/2 x→0

显然 tanx -sinx=tanx*(1-cosx) 在x趋于0的时候, tanx 等价于x,而1-cosx等价于0.5x^2 于是得到 原极限 =lim(x->0) x * 0.5x^2 / x^3 =0.5 故极限值为0.5

lim [(1+tanx)/(1+sinx)]^(1/x^3) =lim [1+(tanx-sinx)/(1+sinx)]^[(1+sinx)/(tanx-sinx)*(tanx-sinx)/(1+sinx)*1/x^3] =e^lim (tanx-sinx)/x^3 * 1/(1+sinx) =e^lim tanx(1-cosx)/x^3*1/(1+0) =e^lim (x*x^2/2)/x^3 =e^(1/2) =√e

0/0型的极限不能随便拆项,因为这样可能造成上下无穷小的阶发生变化。 lim〔x→0〕(tanx-sinx)/x² =lim〔x→0〕(1-cosx)sinx/x²cosx =lim〔x→0〕(sin²x)sinx/x²cosx(1+cosx) =0/2 =0

前两个等式写的不对,因为有限个极限写成线性之和是在每个单项极限都存在才成立,而本题中,每个单项极限都不存在。先消去sinx,再利用洛必达法则,结果为1/2

(e^tanx-e^sinx)/x³ =(e^tanx-e^sinx)/(tanx-sinx)*(tanx-sinx)/x³ 而(e^tanx-e^sinx)/(tanx-sinx)=e^ξ,ξ在sinx与tanx之间 所以原式=e^ξ*(tanx-sinx)/x³ 当x→0时,ξ→0,利用等价替换tanx-sinx~x³/2可知原式=e^0*1/2=1/2

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com