ldcf.net
当前位置:首页 >> lim(tAnx%sinx/sinx*3) >>

lim(tAnx%sinx/sinx*3)

lim(x→0)(tanx-sinx)/(sinx)^3 =lim(x→0)tanx(1-cosx)/x^3 =lim(x→0)x*(1/2x^2)/x^3 =1/2

lim(tanx-sinx/sin³x)=lim(1-cosx)/sin²x=lim 2sin²(x/2)/sin²x=(x²/2)/x²=1/2 x→0

无穷近似值代换,二倍角公式 =lim(1-cosx)/x²limtanx/x =lim2sin²(x/2)/x² =lim2(x/2)²/x² =1/2

等价无穷小的替换要在乘积的形式下才能替换

题干不全

因为tanx精确的说是近似与x/√(x*x+1),这类应用无穷近似值求极限不能简单粗暴的把lim(A+B)拆成=limA+limB,而得先应用三角函数转化,把(tanx-sinx)=(1-cosx)sinx/cosx=2sin(x/2)sin(x/2)sinx/cosx再应用替换,基本都必须把和差形变...

解:这里如果只是lim(tanx/x^3)-lim(sinx/x^3)=lim(x/x^3)-lim(x/x^3)=0这个是没有错的,但是你前面还有式子lim(x-0)[(tanx-sinx)/x^3],因为(tanx-sinx)/x^3,当x趋于0是,分子和分母都趋于0,这是一个0/0型的极限,它符合洛必达法则,

lim(tanx-sinx)/sin³x =lim(sinx/cosx -sinx)/sin³x =lim(1/cosx -1)/sin²x =lim(1-cosx)/[cosx·(1-cos²x)] =lim(1-cosx)/[cosx·(1+cosx)(1-cosx)] =lim1/[cosx(1+cosx)] =1/[1×(1+1)] =1/2 本题非常简单,连等价无穷小都没...

这个没错 然后 =lim (sinx-sinx·cosx)/(cosx·x^3) =lim sinx·(1-cosx)/(1·x^3) =lim x·((1/2)x²)/(x^3) = 1/2

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com