ldcf.net
当前位置:首页 >> sEC 2x的二阶导数 >>

sEC 2x的二阶导数

y=sec2x y'=sec2x*tan2x*2=2sec2xtan2x y''=2(sec2x)'tan2x+2sec2x(tan2x)' =2sec2xtan2x*2tan2x+2sec2x*sex^2x*2 =4tan^2 2xsec2x+4sec^32x =4(sec^2 2x-1)sec2x+4sec^3 2x =8sec^3 2x-4sec2x.

简要步骤如上。

~请首先关注【我的采纳率】 ~如果不懂,请继续追问!~如果你认可我的回答,请及时点击【采纳为最佳回答】按钮~~如还有新的问题,在您采纳后还可以继续求助我二次!~您的采纳是我前进的动力~~O(∩_∩)O,记得好评和采纳,互相帮助祝学习进步!

y=tan(x+y) y'=tan'(x+y) =sec^2(x+y)(x+y)' =sec^2(x+y)*(1+y') y'=sec^2(x+y)/[1-sec^2(x+y)) =-sec^2(x+y)/tan^2(x+y) =-1/sin^2(x+y) =-csc^2(x+y) y''=-2csc(x+y)*[csc(x+y)]' =-2csc(x+y)*[-csc(x+y)cot(x+y)](x+y)' =2csc^2(x+y)cot(x+y)...

y'= dy/dx =sec^2(x+y)·(1+y'); →[sec^2(x+y) -1]·y'=sec^2(x+y); →[tan^2(x+y) ]·y'=sec^2(x+y); →y'=1/sin^2(x+y); 则: y'' =dy' /dx =d[sin^(-2)(x+y)] /dx =(-2)·sin^(-3)(x+y) ·cos(x+y)·(1+y') =-2·sin^(-3)(x+y) ·cos(x+y)·[...

y'=sec^2(x+a) y''=2sec(x+a)*sec(x+a)tan(x+a)=2sec^2(x+a)tan(x+a)

就是纯计算,很容易绕晕,我也许有些地方也是错的,你自己仔细算一遍吧

你要求什么?dy/dx? 1*dy/dx= sec²(x+y) *(dy/dx+1) dy/dx(1-sec²(x+y))=sec²(x+y) dy/dx(-tan²(x+y))=sec²(x+y) dy/dx=-(1+tan²(x+y))/tan²(x+y) dy/dx=-cot²(x+y)-1 d²y/dx²=cot(x+y)csc(x+...

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com